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Simple Summary: During oocyte growth and maturation, the organelle’s morphology of porcine

oocytes changed and populated different compartments depending on the differentiation status.

Changes in ultrastructural or subcellular level of porcine oocytes during oogenesis/folliculogenesis

were observed, potentially leading to future mitochondrion replacement therapies of oocytes.

Abstract: This study aimed to investigate ultrastructural changes of growing porcine oocytes and

in vitro maturated oocytes. Light microscopy was used to characterize and localize the primordial,

primary, secondary, and tertiary follicles. During oocyte growth and maturation, the morphology of

mitochondria was roundish or ovoid in shape depending on the differentiation state, whereas their

mean diameters oscillated between 0.5 and 0.7 µm, respectively, from primary and secondary follicles.

Hooded mitochondria were found in the growing oocytes of the tertiary follicles. In addition to the

pleomorphism of mitochondria, changes in the appearance of lipid droplets were also observed, along

with the alignment of a single layer of cortical granules beneath the oolemma. In conclusion, our

study is apparently the first report to portray morphological alterations of mitochondria that possess

the hooded structure during the growth phase of porcine oocytes. The spatiotemporal and intrinsic

changes during oogenesis/folliculogenesis are phenomena at the ultrastructural or subcellular level
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of porcine oocytes, highlighting an in-depth understanding of oocyte biology and impetus for future

studies on practical mitochondrion replacement therapies for oocytes.

Keywords: oogenesis; organelles; mitochondria; lipid droplets; cortical granules

1. Introduction

The difficulty distinguishing developmental competent from incompetent eggs denotes our

partial understanding of embryo quality-related characteristics and the timing for these specific

characteristics being acquired during folliculo-ovogenesis. Organelles exert complicated associations

within individual cells according to their energetic-metabolic needs during differentiation, maturation,

and fertilization. These differential spatiotemporal capabilities associated with different organelles

are inherited by the developing embryo, from which they eventually differentiate into more specific

somatic cell lineages during later development [1–4]. During early embryogenesis, primordial germ

cells (PGCs) migrate and colonize the genital ridges [5–8]. After that, PGCs enter meiosis and transform

into oogonia, based on their chromosomal sex type, and then give rise to oocytes that are later

surrounded by granulosa cells to form primordial follicles [6]. During folliculogenesis, morphological

and functional alterations occur at the ultrastructural level in the oocyte nucleus (shape and position),

mitochondrion (shape, number, and complex), lipid droplets, endoplasmic reticulum, Golgi complexes,

zona pellucida, gap junctions, and annulate lamellae [9–18]. A better understanding of these ooplasmic

events or characteristics would advance toward resolving the developmental obstacles in female

infertility trough organelle’s transplantation.

To identify these changes, electron microscopy has been a powerful tool to reveal these events

or aberrations within ultra-thin sections. Precise characterization at the cellular level during ovarian

folliculo-ovogenesis is crucial for monitoring normal development of female gametes, as well as for

improving the assisted reproductive techniques, such as oocyte cryopreservation and in vitro embryo

production [3,4,19]. Therefore, the present study aimed to investigate the ultrastructural changes

including mitochondrion size of porcine oocytes.

2. Materials and Methods

2.1. Collection of Ovaries and Oocyte In Vitro Maturation (IVM)

Ovaries from prepubertal gilts (crossbred females) were collected at a local abattoir and transported

to the laboratory in normal saline solution (0.9% NaCl) containing penicillin (600 IU/mL) at 37 ◦C

within 1 h after slaughter as described in our previous studies [19]. In laboratory, ovaries were trimmed

and rinsed with 70% ethanol and saline. Samples from ovarian cortex were taken for evaluation of

various stages of folliculogenesis including preantral (primordial, primary, and secondary), antral

follicles, and in vitro matured oocytes. Oocytes were aspirated from follicles (3–7 mm in diameter), and

cumulus–oocyte complexes (COCs) possessing a homogeneous ooplasm were selected for maturation in

North Carolina State University 23 (NCSU-23) medium. Then, 20–30 oocytes were randomly allocated

to each 100-µL droplet of IVM medium covered by mineral oil and cultured at 39 ◦C in an incubator

containing 5% CO2. For the first 22 h, COCs were cultured in NCSU-23 medium supplemented with

10% porcine follicular fluid, cysteine (0.1 mg/mL), equine chorionic gonadotrophin (10 IU/mL), and

human chorionic gonadotrophin (10 IU/mL), and then the COCs from all treatment groups were

switched to the medium without hormones for another 22 h.

2.2. Light Microscopic Evaluation

Minced pieces of the ovarian cortex were fixed in 10% formaldehyde (V/V) in 0.1 M

phosphate-buffered saline (PBS, pH 7.2) at 4 ◦C overnight before the renewal of fixative solution for
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a second round. The fixed ovarian tissues were dehydrated in ethanol, clarified with xylene, and

embedded in paraffin wax. Semi-serial sections (5 µm in thickness) were stained with hematoxylin

and eosin (HE) and examined with a Zeiss Axiophot bright field light microscope (Zeiss, Oberkochen,

Germany). Only morphologically normal follicles with visible nuclei were evaluated and images

were captured with a digital CCD camera (Sony DXC-107A, Tokyo, Japan). Follicles were analyzed

by light microscopy. The classification of follicle development observed in this study was based on

Fair et al. [18] categorization for bovine follicles. Briefly, Fair et al. [20] divided them into five classes: (i)

resting primordial follicles, with a single layer of flattened GCs; (ii) activated primordial follicles, with

a single layer of both squamous and cuboidal GCs; (iii) primary follicles, with a single layer of cuboidal

GCs; (iv) secondary follicles, with an incomplete or complete bilayer of cuboidal cells; and (v) early

tertiary follicles, with more than two layers of GCs delineating one or several intercellular cavities.

2.3. Transmission Electron Microscopy (TEM)

All reagents for the electron microscopy were purchased from Electron Microscopy Sciences

(Hatfield, PA, USA) and samples were processed as described in previous studies [20–29] with some

modifications. Primordial, primary, secondary, antral follicles, and in vitro matured oocytes were

evaluated by TEM. Portions of the ovarian cortex and dissected antral follicles were prefixed in 2%

paraformaldehyde and 2% glutaraldehyde in 0.1 M PBS (pH 7.2) for 1 h. Once fixated, the tissue

was washed by aspiration three times for 5 min each in fixation buffer. After checking the accurate

follicle location, the tissue was further cut into small blocks (~1 mm3) for a second round of fixation at

4 ◦C overnight. Later, samples were post-fixed in solution containing 1.5% osmium tetroxide, 0.8%

potassium ferricyanide, and 5 mM calcium chloride for 4 h, followed by dehydration in gradient

acetone and then embedded in laboratory grade white resin (ProScitech, Kirwan, QLD, Australia).

Ultra-thin sections (70 nm) were obtained from the samples mounted on copper grids (G200HF3-C,

Gilder Grids, Lincolnshire, England), stained with 2% uranyl acetate (BDH Chemicals Ltd., Poole,

England) for 30 min and then lead citrate (Sigma, St. Louis, Missouri, USA) for 10 min prior to

examination with a transmission electron microscope (Jeol JEM 1400, Tokyo, Japan). Micrographs were

taken, processed, and analyzed using Image J 1.46r (National Institute of Mental Health, Bethesda,

MD, USA).

2.4. Morphometric Analysis of Mitochondria

Parameters applied in measurement were based on previous studies with minor

modifications [1,17,30]. Briefly, measurements of mitochondrion diameter were performed using Image

J 1.46r on micrographs from primordial follicles to matured oocytes. The numbers of mitochondria

measured from each growing stage were: primordial follicle, 28; primary follicle, 28; secondary

follicle, 33; tertiary follicle 29; and matured oocyte, 31. The numbers of oocytes used for mitochondria

measurement out of those evaluated by TEM from each growing stage were: primordial follicle, 5/9;

primary follicle, 5/11; secondary follicle, 4/7; tertiary follicle 4/11; and matured oocyte, 4/12. Data on the

size of mitochondria were analyzed using ANOVA, and the Tukey’s test was used to detect differences

among sample means by using commercial statistic package SPSS 17.0 (SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Light Microscopic Structures Examined by HE Staining

In the primordial follicle, an oocyte is normally encompassed by a single layer of flattened

granulosa cells. Primordial follicles are found in clusters and their oocyte exhibited ovoid to spherical

in shape (Figure 1A), with a centered or eccentric voluminous nucleus (Figure 1B). Occasionally,

cuboidal granulosa cells were present in some primordial follicles, which usually appeared at one pole

of the follicle (Figure 1C). Primary follicles had one layer of cuboidal granulosa cells surrounding the

oocyte in which the nucleus is voluminous and eccentric (Figure 1D). Follicles with two or more layers
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of cuboidal granulosa cells without antral cavity were classified as secondary follicles (Figure 1E–G).

Early secondary follicles lacked zona pellucida (ZP), whereas the oocyte and granulosa cells appeared

juxtaposed (Figure 1E). While the secondary follicle increased in numbers of granulosa cell layers

apposed, the ZP was formed and became thicker and thicker (Figure 1F–H). The oocytes of tertiary

follicles had a cumulus–oocyte complex (COC) where the oocyte was surrounded by corona radiata

linked to mural granulosa cells by a mound of cumulus oophorous and floating in the antrum. The

thecal cells wrapped the mural granulosa cells and the two follicular cell masses were separated by the

basement membrane. At this stage, all oocytes were surrounded by a thick ZP layer (Figure 1I).

 

Figure 1. Microscopic morphologies of growing oocytes, follicles, and the associated follicular cells

at different stages of folliculogenesis by using semi-thin sections of porcine ovaries. (A) A cluster of

primordial follicles (enclosed in dot line) is observed in the cortex area. (B) Note the flattened granulosa

cells (Gc) (arrow) are surrounding an immature oocyte, and the oocyte contains an eccentrically

localized nucleus (arrowhead). (C) An activated primordial follicle: an oocyte is surrounded by two

types of granulosa cells, i.e., cuboidal granulosa cells (arrow) at one pole and flattened granulosa

cells (arrowhead). (D) A primary follicle oocyte is surrounded by a single layer of cuboidal granulosa

cells (arrow), and the oocyte contains an eccentrically localized nucleus (arrowhead). (E–H) An early

secondary follicle is transforming into a late stage secondary follicle with the onset of zona pellucida

(ZP) formation (white arrow). Note that the increasing layers of cuboidal granulosa cells can be

observed with no ZP structure (E), and all oocytes possess an eccentric germinal vesicle (GV nucleus,

arrowhead). A very thin ZP (F) starts to form (white arrow). (G) The ZP is getting thicker as the

granulosa layers increased. The granulosa cells start getting loosening while the ZP is thickening. (I) A

tertiary follicle shows multiple layers of polar granulosa cells, antrum, and an eccentric cumulus–oocyte

complex (COC). O, oocyte. Magnification: 100× (Scale bars, 100 µm) (A,B,D; E–G); 200× (scale bars,

50 µm) (C,H); and 40× (scale bar, 250 µm) (I).
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3.2. Ultrastructures of Follicles Examined by TEM

3.2.1. Primordial Follicles

In primordial follicles, each oocyte was embodied by a single layer of squamous epithelial cells

known as pregranulosa cells (Figure 2A). Cell membranes of the oocyte and adjacent granulosa cells

were juxtapositionally aligned. These cells were flattened and their nuclei were mostly elongated

and crenellated shaped (Figure 2A). Occasionally, two or more clusters of primordial follicles were

observed and their oolemma with some tight junctions. The oocyte nucleus occupied either a

central or eccentric position of the ooplasm (Figure 2), and mitochondria were oval or roundish with

electro-dense matrices (Figure 2C). Mitochondria with tiny cristae at a pole were sparsely distributed

in the ooplasm (Figure 2C). Mitochondria aggregated into a complex associated with vesicles and

unknown electro-dense components forming mitochondria–vesicles (MV) complexes, located close to

the nucleus (Figure 2C).

 
Figure 2. Transmission electron microscopic images of porcine primordial follicles showing the

ultrastructure of oocytes and the associated cellular components: (A) a primordial follicle having

juxtaposed flattened pregranulosa cells; (B) a primordial follicle with a voluminous eccentric oocyte

nucleus (encompassed dot line); and (C) oocytes from the primordial follicles containing round and

oval mitochondria with tiny cristae and electrodense matrices. Gc, granulosa cell; M, mitochondria;

MV, mitochondria–vesicles complexes; Mb, cytoplasmic membrane.

3.2.2. Primary Follicles

The predominant spherical oocyte was surrounded by a single layer of granulosa cells (Figure 3).

The oocytes of primary follicles were spherical or oval, with an initial eccentric nucleus when all of

the granulosa cells were not yet cuboidal. Mitochondria were round and had electro-dense matrices.

Oocytes from late primordial follicles enclosed by cuboidal granulosa cells had their organelles evenly

distributed throughout the ooplasm. The ooplasm was full of vesicles, which appeared to form

coalescent structures more frequently than that of the early primordial follicles. At this stage, the

surrounding granulosa cells became cuboidal, and endoplasmic reticulum were rarely observed in the

ooplasm; their cytoplasmic ultrastructure was similar to that of the primordial follicles.
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Figure 3. Transmission electron microscopic images showing the ultrastructure of oocytes and their

surrounding cells in porcine primary follicles. (A) An early primary follicle with one layer of cuboidal

granulosa cells beneath the basement membrane (BM) possessing an eccentric nucleus and clusters

of organelles. (B) Note the clustering of organelles consists of mitochondria, endoplasmic reticulum,

and vesicles, which are all tightened by the cement-like structure. The primary follicle has an even

distribution of organelles throughout the ooplasm. Granulosa cells (GCs) are cuboidal in shape and

oocyte cytoplasm contains mitochondria (M). ER, endoplasmic reticulum; O, oocyte; N, nucleus; M,

mitochondrion; Mb, membrane.

3.2.3. Secondary Follicles

In the secondary follicle, oocytes were surrounded by more than one complete layer of cuboidal

granulosa cells. Early secondary follicles had not yet displayed a well-developed zona pellucida. Large

coalescent vesicles (collapsed) were observed compromising the visualization of organelles (Figure 4).

In the secondary follicle, oocytes with dense organelles were mostly located at the periphery of the

ooplasm. Mitochondrial density increased and their matrices were greyish in color. Their morphology

was mostly round or oval with increased size compared to that of primordial and primary follicles.
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N 

Figure 4. Transmission electron microscopy showing ultrastructure of oocytes (O) enclosed by

multilayers of granulosa cells (GCs) in the secondary follicle. The secondary follicle reveals evenly

distributed mitochondria. N, nucleus.

3.2.4. Tertiary Follicles

All tertiary follicles contained a spherical oocyte surrounded by the ZP and enclosed by tightly

packed granulosa cells with much reduced extracellular matrix (ECM) (Figure 5). At this stage,

granulosa cells surrounding the oocyte are now termed cumulus cells (CCs). The most inner granulosa

cells closely associated with the zona pellucida named corona radiata, possessed projections through

the ZP that ended at the indentations on the oolemma (rectangle box, Figure 6) or the perivitelline

space (PVS). Zona pellucida had two zones: the outer ZP contained many cavities manifested as a

sponge like-structure, while the inner zone is relatively firmer (Figure 6A). The perivitelline space

was gradually reduced from which erected and bent microvilli of oolemma penetrated through the

ZP (Figure 6B). Aggregated organelle structures (Figure 7A) consisting of mitochondria possessing

developed cristae, vesicles, and other organelles bound with an electron-lucent structure (Figure 7A,B).

Mitochondria with pleomorphic morphologies such as hooded (that appears in the section open

to the cytoplasm, and like internal vesicles marked with * sign conformation were also observed

(Figure 7A,C). Three oocytes out of eleven evaluated oocytes revealed presence of hooded mitochondria.

The density of lipid droplets increased and were presented as a uniform and electro-dense streak-like

structure (Figure 7C). Oocyte mitochondria and their complexes formed clusters in the ooplasm. These

mitochondria were roundish and had darker matrices, as well as the most developed long cristae

(Figure 7A,B,D). Collapsing mitochondrion was observed in tertiary follicle oocyte (Figure 7D).
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Figure 5. Transmission electron microscopic view of immature oocytes from antral follicles. The oocyte

has fully formed zona pellucida (ZP), compact cumulus cells with minimal extracellular matrix (ECM),

organelle aggregates, and clusters of mitochondria (M) beneath the vitelline membrane and in the

ooplasm. CC, cumulus cell; M, mitochondrion; O, oocyte.

Figure 6. Cont.
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Figure 6. Ultrastructure of the transzona protrusion (TZP) from cumulus cells through the zona

pellucida (ZP) to the oolemma membrane. (A) Ultrastructural details of cumulus–oocyte complexes

showing the ZP is traversed by the cumulus cell projection (CCP) or TZP into the perivitelline space

(PVS). (B) Zona pellucida of an immature oocyte presenting some CCPs that either end in the PVS

(arrow) or form a tight junction (rectangle box) with the plasma membrane (Mb) of oocytes.

 

Figure 7. Ultrastructures of the organelles in oocytes of tertiary follicles. (A) Ooplasmic aggregate

of organelles in the oocyte. (B) Aggregates of vesicles containing electron-dense component in

association with mitochondria (mitochondria–vesicle (MV) complexes). (C) Electron micrograph of

an immature oocyte with hooded mitochondria (*) in the aggregate of organelles. Aggregates of

mitochondria associated with vesicles and lipid droplets. In the immature ooplasm, lipid droplets

have less electron-dense and granule-like structures. Hooded mitochondrion matrices possessing

well-developed cristae (arrow). (D) Collapsing mitochondrion was observed in the tertiary follicle

oocyte. M, mitochondrion.
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3.2.5. In Vitro Matured Oocytes

Matured oocytes enclosed in the cumulus–oocyte complexes (COCs) were characterized by an

increased ECM volume among the surrounding cumulus cells. Cumulus cells were loosely compacted

and initially had a lamellipodia-like projection toward the oocyte and increased perivitelline space (PVS).

Clusters of mitochondria were distributed in the ooplasm. Cortical granules (CGs) appeared during

the maturation process and were positioned beneath the oolemma, forming a single-layered ring-like

structure (Figure 8). The first polar body (PB) was extruded into the PVS in which relatively darker

and flocculent material was observed. PB was surrounded by several residual cytoplasmic droplets

(Figure 9A). The most prominent organelles in a matured pig oocyte were some membrane-bound

vesicles (large vesicles), lipid droplets and mitochondria (Figure 9B). The size of lipid droplets increased

after maturation and their appearance varied from uniform electron-lucent streak to multiform

streak-like structures, having different electro-dense grey spots within the droplets or on the border

of vitelline membranes (Figure 9C). At this stage, the morphology of mitochondria was roundish or

oval possessing electro-dense matrices. The mitochondria also bound to ERs (mostly smooth ERs) and

lipid droplets form MVBs (Figure 9D). We also observed disruption of transzona protrusions (TZPs)

throughout the ZP and the retracted TZPs toward cumulus cells (Figure 9E).

 

Figure 8. Electron micrograph of matured porcine oocytes (O). Note that the increased extracellular

matrix (ECM) between cumuli cells (CCs) and the retracted cytoplasmic projections from cumulus cells

against the oolemma are observed. Clusters of mitochondria are distributed in the ooplasm. A single

ring of cortical granules (CGs) is present beneath the plasma membrane.
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Figure 9. Ultrastructures of a matured porcine oocyte. (A) Electron micrograph of a matured oocyte

with extruded polar body (PB) in the perivitelline space (PVS). (B) An electron micrograph of a matured

oocyte. Note that the ruptures of cytoplasmic projections are visible in the PVS. The cortical granules

(CGs) are more electron-dense (black) and form a ring-like structure beneath the oolemma membranes.

(C) An electron micrograph showing lipid droplets in a matured oocyte. These lipid droplets are

multi-structured and possess an electron-dense and streak-like morphology with mixed spots or border

that are more grayish and amorphous. (D) Mitochondria are roundish with electrodense matrices

that are centrifugally located in association with other organelles. (E) A micrograph of cumulus cells

surrounding a matured oocyte. Note the enlarged ECM and retracted cytoplasmic projections, i.e., TZP.

M, mitochondria; ZP, zona pellucida.
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3.2.6. Mitochondrial Morphometry

The overall morphology of oocytes from different developmental stages of follicles is summarized

in Figure 10. The mitochondrial morphometric values of oocytes derived from primordial, primary,

secondary, and tertiary follicles, as well as that of in vitro matured oocytes, are presented in Table 1.

Mitochondria of oocytes from primary and secondary follicles had apparently different diameters

(p < 0.05).

Figure 10. A summary diagram to illustrate mitochondrial morphodynamics in porcine oocytes during

folliculogenesis toward meiotic maturation. Microtopography, size, shape, configuration of cristae, and

matric density of the mitochondria change along the course of folliculogenesis. Oocyte mitochondria of

the primordial follicle are roundish and the matrix is granite-like, and that of oocytes from primary

follicles have darker matrices. The shape of mitochondria in the oocyte of secondary follicles is more

elongated with vacuolated matrices. Oocytes of tertiary follicle also possess round mitochondria

with elongated cristae and darker matrices. Mitochondria of in vitro matured oocytes have evenly

distributed grayish matrices. Chronological and topomorphological changes of some major aggregates

and organelle re-arrangement are observable during folliculogenesis and oocyte maturation.

Table 1. Mitochondrion diameters (µm) of oocytes from various stages of folliculogenesis and after

in vitro maturation.

Follicular/Oocytes Stages
Primordial

Follicle
Primary
Follicle

Secondary
Follicle

Tertiary
Follicle

Matured
Oocyte

Mean ± SEM 0.60 ± 0.03 ab 0.51 ± 0.03 a 0.73 ± 0.03 b 0.59 ± 0.03 ab 0.69 ± 0.03 ab

Minimum 0.340 0.223 0.416 0.276 0.272

Maximum 0.859 0.803 1.047 0.926 1.014

No. of mitochondria measured 28 28 33 29 31

No. of oocytes evaluated by TEM 9 11 7 11 12

No. of oocytes used for
mitochondria evaluation

5 5 4 4 4

No. oocyte hooded mitochondria 0 0 0 3 0

a,b Means without the same superscript differed; No, Number.
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4. Discussion

We aimed to investigate the ultrastructural changes of porcine oocytes during folliculogenesis and

in vitro maturation using electron microscope. Morphological characteristics of primordial, primary,

secondary, and tertiary follicles are depicted in Figure 1A. In the present study, the observed primordial

follicles with squamous (flattened) GCs and a few cuboidal GCs at one pole (Figure 1B) were the

activated primordial follicle, as suggested by Fair et al. [18]. They are also named as the intermediary

follicle because of the possession of both flattened and cuboidal unilaminar granulosa cells [18].

Oocytes from primordial follicles had only a few mitochondria sparsely distributed in the ooplasm.

A similar pattern was described in human oocytes during the leptotene phase of meiosis, and was

considered as a transitional stage because mitochondria only occupied the perinuclear position at the

zygotene [1,31,32]. Oocytes of primordial and primary follicles contained mainly roundish or oval

mitochondria, in which matrices were less electron-dense. Our findings are in agreement with those of

previous investigations where pig oocytes of the primordial follicle possessed mitochondria that were

spherical or egg-shaped with light matrix [17,18]. In growing follicles, mitochondria of the oocyte

increased in number and also dispersed in the ooplasm [25,33]. Among organelles, we found that

roundish mitochondria were the most abundant one in porcine oocytes of all follicular stages. Also,

the mitochondrion diameter of pig oocytes decreased from primordial to primary follicle. Oocyte

mitochondria of the secondary follicles were larger and were mostly similar in size in matured oocytes,

while mitochondrion diameters from the tertiary follicle oocytes was relatively smaller (Table 1). The

ooplasmic distribution of mitochondria in oocyte from secondary follicles differed from that repported

by Silva et al. [18], who obtained a string of pearl organization of mitochondria. Compared to that

of human’s, the size of pig mitochondria has evolved to become much smaller. Briefly, in humans,

mitochondrial dimension increases from the dividing oogonia to the oocytes of primordial and primary

follicles, reaching a diameter of 1–1.5 µm, but later a slight reduction (0.5–0.7 µm) along the course of

folliculogenesis was observed [1,32].

Surprisingly, few hooded mitochondria were found in the tertiary follicle oocytes (3/11 oocyte).

The hooded mitochondria were similar to those found in cattle [31,33–35]. Unlike ruminant (sheep

and cattle) oocytes and early embryos [31,33–38], formation of hooded mitochondria was infrequently

observed in porcine oocytes matured in vitro [16]. We infer that the hooded mitochondria found in

our study might denote a response to a suboptimal growing environment. Immature oocytes had

their mitochondria and their relative aggregates located beneath oolemma, whereas they formed an

even distribution in the ooplasm of mature oocytes, in line with the findings of Sun et al. [37]. In the

present study, the ZP surrounding oocytes appeared in the secondary follicles (Figure 1F). It differed

from oocytes of others species which had ZP apposition starting as early as the primary follicle stage

in guinea pigs [38], rabbits [39], humans [40,41], mice [42], cats [43], and dogs [44,45]. Our study

revealed two structurally different layers of ZPs. The outer layer, much closer to cumulus cells, was a

sponge-like structure presenting many cavities (Figure 7A). These cavities diminished in size from

the outer to the inner part of the ZP; therefore, the inner ZP became a firm and continuous layer

(Figure 7A). These findings are in agreement with those reported by Suzuki et al. [46], observed using

scanning microscopy. Furthermore, granulosa cell projections proceeded through ZP and ended either

in the perivitelline space or at the tight junctions with the oolemma (Figure 7B). Evidence indicates

that somatic cell–oocyte interactions via gap junctions are essential for oocyte growth and metabolisms.

They are also a critical portal for transportation of ions, nucleotides, amino acids, ATP, and pyruvate to

the oocyte [12,15,47].

From secondary follicle oocytes to matured oocytes, numerous electron-lucent structures with

various conformation and sizes are found to be lipid droplets in the present study ( Figure 5,

Figure 7A,C,D, Figure 8, and Figure 9A,C). Throughout this study, we noticed the presence of bright

vesicles in the ooplasm; however, we could not accurately define them due to the absence of appropriate

staining. Therefore, some lipid droplets might have been misclassified as vesicles in other previous

studies. In addition, the morphological changes in lipid droplets during folliculogenesis concurred
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with the changes in the nature of the lipids stored in those droplets. Isachenko and coworkers [48]

suggested that the observed changes resulted from cytoplasmic lipolysis, i.e.: dark vesicles changing

to gray ones after lipid utilization. In this study, intermediate patterns of the lipid droplets were

frequently observed.

In the oocytes, mitochondrial-smooth ER aggregates (M-SER) and the mitochondrial-vesicle

complexes (MV) are known to be involved in producing a reservoir of substances or membranes to

participate in fertilization and early embryogenesis [1]. In the present study, cortical granules were

mainly confined to the cortical region of the ooplasm throughout maturation and formed a ring-like

structure. Matured oocytes had their connections via cumulus cell processes to oolemma membrane

disrupted gradually, and the increase of PVS paralleled with the extrusion of the first PB, which was

found as a flocculent structure in the present study. Similar observations were also reported in bovine

and in vitro matured mouse oocytes [49,50].

5. Conclusions

Oocyte mitochondria changed in morphology, populated in different domains of the ooplasm, and

established complicate connections with other organelles during meiotic maturation. Mitochondrial

diameters and appearance also change significantly during the folliculogenesis and after in vitro

maturation. This is the first report describing hooded mitochondria in growing porcine oocytes from

the tertiary follicles. Moreover, alterations in the appearance of lipid droplets in growing oocytes

implicate changes in the nature or status of lipid metabolisms, but more studies are required to bridge

the physiologic gap between the organelles and oocyte developmental competency.
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